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Project Objective 
The purpose of this project was to discover new continuous approximation models for modern logistical 
problems in which time plays a significant role, with a specific focus on last-mile delivery. Famous 
examples of such problems include the vehicle routing problem with time windows (VRPTW) and the 
cumulative travelling salesperson problem (CTSP). The continuous approximation paradigm is a 
quantitative method for solving logistics problems in which one uses a small set of parameters to model  
a complex system, which results in simple algebraic equations that are easier to manage than (for  
example) large-scale optimization models. As a further benefit, one often obtains insights from these  
simpler formulations that help to determine what affects the outcome most significantly.  Although 
continuous approximation models have been used for over 60 years in logistics systems analysis, there 
has been very little research conducted on their use to problems with temporal features such as those 
described above. To the best of our knowledge, this project was the first of its kind to incorporate these 
temporal features into the continuous approximation paradigm. 

Problem Statement 

In completing this project, the team designed simple and concise mathematical models for predicting 
trade-offs that arise in logistical problems with time constraints and objectives.  Examples of these trade-
offs include the relationships between time to completion of service, average or worst-case customer 
satisfaction, vehicle miles travelled (VMT), or greenhouse gas (GHG) emissions. Traditionally, these 
problems have been solved in a discrete setting, involving fixed sets of (for example) demand points, time 
periods, and service facility locations; one then solves them with an integer mathematical programming 
solver such as CPLEX or Gurobi. A drawback of this approach is that the problems are almost always NP-
hard, and hence solving large-scale instances would require enormous computational efforts which likely 
increase exponentially with the problem instance size. A further drawback is that such models are often 
extremely complex, which hinders understanding of salient problem features and managerial insights.  For 
these reasons, this project used tools from geospatial optimization, computational geometry, and 
geometric probability theory to discover simple continuous approximation models that identify the key 
problem attributes that affect them most significantly. A continuous approximation model is 
characterized by its use of continuous representations of input data and decision variables as density 
functions over time and space, and the goal is to approximate the objective function into an expression 
that can be optimized by relatively simple analytical operations. Such an approximation enables 
transforming otherwise high-dimensional decision variables into a low-dimensional space, allowing the 
optimal solution to be obtained with mere calculus, even when significant operational complexities are 
present. The results from such models often bear closed-form analytical structures that help reveal 
managerial insights. 
  
Research Methodology 
This project focused on studying the cumulative traveling salesperson problem (CTSP), which focuses on 
minimizing the total waiting time of all customers to be visited, rather than finding the shortest total route, 
which is the objective of the traditional traveling salesperson problem. In this variant, the goal is to 
minimize the sum of the arrival times at each customer, prioritizing quicker service to all customers over 
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the traditional objective of minimizing the total distance or travel time of the tour. This shift in objective 
from the traditional Traveling Salesman Problem (TSP) makes the CTSP particularly relevant for scenarios 
where the speed of service delivery is crucial, such as in logistics for perishable goods.  Our approach 
consisted of three phases: an upper bounding argument, a lower bounding argument, and extensions to 
further problem types: 

• Initially, the team developed a method to determine upper bounds for the CTSP, employing a 
routing strategy that prioritizes visiting areas with higher customer densities before those with 
fewer customers. This approach, referred to as the "most dense to least dense" strategy, aims to 
minimize the total waiting time across all customers. By formalizing this strategy, we established 
upper bounds that serve as a benchmark to evaluate the efficiency of CTSP solutions. 

• Next, we focused on establishing lower bounds for the CTSP, using probabilistic modeling and 
asymptotic analysis to understand how the problem's behavior changes as the number of 
customers increases. This phase was essential to ensure the feasibility of the proposed solutions. 

• After addressing the CTSP, we extended our analysis to the Cumulative Capacitated Vehicle 
Routing Problem (CCVRP). This problem variant incorporates not only the CTSP's temporal 
objectives but also the capacity constraints of the vehicles. Our study of the CCVRP built upon 
our work on the CTSP, addressing the additional complexity introduced by vehicle capacities. 

Results 
The conclusions of our project, based on theoretical analysis as well as empirical validation, give a fast and 
simple formula for predicting the total cost of a CTSP tour or its variant, the CCVRP.  Our main result is the 
following theorem: 

Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛  be independent samples drawn from a probability density 𝑓𝑓 with compact support.  Let 
𝐿𝐿(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) denote the cost of the minimal CTSP tour through all points.  We have 

 

Where the function P is defined as  

 

In a nutshell, this theorem allows us to assert a few key points: First, we observe that the CTSP scales 
proportionally to 𝑛𝑛3/2 , revealing a diseconomy of scale as the number of customers increases. This 
indicates that as the problem size grows, the cumulative waiting time for customers increases at a rate 
faster than linear, underscoring the importance of efficient routing strategies to mitigate this effect.  
Second, we establish that the "most dense to least dense" routing rule described in our report is 
essentially optimal for minimizing the total waiting time in CTSP scenarios. This means that prioritizing 
areas with higher customer densities before moving to less dense areas is not just a heuristic but aligns 
closely with the optimal solution strategy. Finally, our proof techniques unveil an important distinction 
between solutions that are optimal for the traditional Traveling Salesman Problem (TSP) and those 
suitable for the CTSP. We demonstrate that solutions deemed system optimal for the regular TSP, based 
solely on minimizing the total travel distance or time, may not necessarily provide the best outcomes for 
the CTSP. This distinction arises because the CTSP introduces an additional layer of complexity by 
prioritizing the reduction of cumulative waiting time, which is not a consideration in the traditional TSP. 
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